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ABSTRACT

Object association is a common problem encountered in many ap-
plications. Spatial object association, also referred to as crossmatch
of spatial datasets, is the problem of identifying and comparing ob-
jects in two datasets based on their positions in a common spatial
coordinate system – one of the datasets may correspond to a catalog
of objects observed over time in a multi-dimensional domain; the
other dataset may consist of objects observed in a snapshot of the
domain at a time point. The use of database management systems to
the solve the object association problem provides portability across
different platforms and also greater flexibility. Increasing dataset
sizes in today’s applications, however, have made object associa-
tion a data/compute-intensive problem that requires targeted opti-
mizations for efficient execution. In this work, we investigate how
database-based crossmatch algorithms can be deployed on differ-
ent database system architectures and evaluate the deployments to
understand the impact of architectural choices on crossmatch per-
formance and associated trade-offs. We investigate the execution
of two crossmatch algorithms on 1) a parallel database system with
active disk style processing capabilities, 2) a high-throughput net-
work database (MySQL Cluster), and 3) shared-nothing databases
with replication. We have conducted our study in the context of a
large-scale astronomy application with real use-case scenarios.

1. INTRODUCTION

Object association, also known as cross-correlation or crossmatch,
is the process of identifying and comparing objects or entities present
in different datasets. Datasets in applications involving object as-
sociation are often acquired from multiple observations of objects
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under varying experimental conditions and/or at different snapshots
in time. In this work, we target the spatial object association prob-
lem (or the spatial crossmatch problem), in which objects are com-
pared and matched based on their location in a multi-dimensional
spatial domain. The object association problem is commonly en-
countered in many application domains. For example, a biomedical
researcher may wish to match observations from multiple micro-
scopic images to study the temporal evolution of cancerous cells
within an organism. As another example, in astronomy, astronomers
seek to crossmatch celestial objects captured at different wavelengths
over time. In this case, objects observed by a telescope in a given
time period may need to be compared and matched with objects in
a catalog constructed from earlier observations.

The crossmatch problem can be defined as follows: Given two or
more datasets of objects, the goal is to find foreach and everyob-
ject in one dataset all objects in the other datasets that lie within
a certain "distance" of the object. Here, the notion of distance is
defined based on a metric for the application under question. When
the comparison between two objects is based on their positions in
a common spatial domain, then the problem is referred to as the
spatial object associationor spatial crossmatchproblem. The dis-
tance metric generally corresponds to the Euclidean distance or the
angular separation between the objects in the spatial domain. In
a GIS system, for instance, objects are spatially referenced to the
earth. In such cases, crossmatch is based on their spatial proximity
on earth.

Information about objects can be constructed from numerous sur-
veys or observations using instruments, e.g., observation of objects
in the sky by telescopes in an astronomy application. Each ob-
ject has a unique identifier and a set of qualitative and quantitative
features including its spatial coordinates. Object data are gener-
ally maintained in lists or catalogs. These catalogs are incremen-
tally updated with newer observations of the same or different ob-
jects over time and hence the sizes of these catalogs may grow in
time. Crossmatching of objects in moderately sized catalogs can be
performed efficiently in reasonable time [11]. However, catalogs
containing millions and billions of objects are increasingly becom-
ing common in today’s applications. The data and compute inten-
sive nature of the problem presents a difficult challenge to the data
management systems employed for such applications especially
when the applications have real-time requirements. Crossmatch al-
gorithms need to read from and update potentially multi-terabyte
sized, disk-resident object catalogs. Hence, the performance of the
crossmatch operation is dictated not only by the speed of evaluation



of the distance metric between pairs of objects, but also by the effi-
ciency of data handling, i.e., the efficiency of data organization and
storage, the performance of indexing, caching, and pre-fetching of
data, and parallel processing of crossmatch operations. The choice
of the underlying system for such data-intensive applications thus
becomes an important decision that crucially impacts the applica-
tion performance.

The catalog-based nature of datasets in applications involving ob-
ject association operations naturally lends itself to the use of rela-
tional databases systems for data management. The ease of use and
standardization of data definition and data manipulation languages
make database systems a natural choice for storing large data. In
this work, we investigate and evaluate different configurations of
database systems on various architectures to study their impact on
the performance of spatial object association (crossmatch). Clearly,
a customized solution that is performance optimized for a specific
architecture and the crossmatch operation will likely achieve better
performance than a solution based on the use of a general database
management system. However, there are some disadvantages in
adopting such an approach; firstly, if similar problem requirements
arise in a different domain, then the customized solution may not
be directly applicable without making substantial modifications,
whereas an existing database-oriented solution can modified more
easily to suit the needs of the new application. Secondly, the vast
amounts of data may be stored in publicly accessible data archives.
Users may wish to modify application parameters or explore the
data in many more ways than via specific operations like the cross-
match. In addition to providing generalized, flexible solutions to
data selection and other exploration operations, database systems
possess the important feature of portability across different archi-
tectures and computing platforms.

We focus on spatial crossmatch in the context of a large-scale as-
tronomy application known as the Large Synoptic Survey Tele-
scope (LSST) [8]. Our experiments are based on real use-case
scenarios borrowed from the LSST. We argue that similar require-
ments will arise in other application domains including GIS. Hence,
our findings can be applied in other application domains. The pri-
mary contribution of our work is that we provide an evaluation
of and insights about how different parallel database management
systems and architecture choices affect the performance of spatial
crossmatch algorithms. We investigate the execution of two cross-
match algorithms known to be fast using 1) a parallel database
management system with active disk style execution support for
some types of database operations, 2) a database system designed
for high-availability and high-throughput (MySQL Cluster), and 3)
a distributed collection of database management systems with data
replication.

2. APPLICATION DESCRIPTION
In large-scale astronomy studies, one or more high-resolution tele-
scopes repeatedly capture images of the night sky over time. Object
detection algorithms are used to detect and extract celestial objects
from these images. These objects correspond primarily to light
sources such as stars and galaxies. The object data and correspond-
ing measurements are maintained in massive astronomy catalogs.
A popular search query is thepoints-near-a-pointquery, in which
for a given object, the catalogs have to be searched to determine
all objects that lie within a certain angular separation or search ra-
dius from that particular object. The astronomy crossmatch prob-
lem belongs to the class of spatial crossmatch problems and is a

generalization of the points-near-a-point query. Then-way astron-
omy cross-match query is as follows: “Givenn catalogs of objects,
for each object belonging to one catalog, determine all potential
matching objects from the remainingn − 1 catalogs”, i.e. deter-
mine all objects that lie within a search radius ofd arcseconds from
that particular object.

The crossmatch query is useful in the following scenarios:

• When multiple collaborating astronomers capture the night
sky using telescopes with different detection capabilities and
wavelength settings from different geographic locations, their
observations will be made under different conditions. Cross-
match helps to correlate their findings and provides a means
to ratify their observations and accounting for unexpected
phenomena.

• Due to the limited field-of-view (FOV) of the telescopes, the
captured images generally correspond to smaller regions of
the sky. When the same region of sky is observed multiple
times, the data from these observations need to be “merged”
accordingly so that up-to-date information for that region is
available for further analysis and exploration. Crossmatch
is an integral part of this merging operation. Snapshot data
from every new observation is crossmatched against the his-
torical catalog and the latter is updated with the results of the
crossmatch.

The Large Synoptic Survey Telescope (LSST) [8] is a planned wide-
field survey reflecting telescope that will photograph the available
sky every three nights. The LSST has unprecedented data acqui-
sition rates, courtesy of a 3.2 Gigapixel camera that captures an
image every 15 seconds (12-15 terabytes a night). All acquired im-
age data is archived and is expected to amount to 55 petabytes after
10 years [4]. The LSST catalogs are expected to contain around 50
billion objects at the end of the survey. One of the main scientific
goals of the LSST is the ability to detect small objects and transient
events that occur deep in the solar system.

Processing of image data occurs at aBase Camp, a computing cen-
ter near sea level below the mountaintop telescope [4]. Data anal-
ysis pipelines have been constructed by astrophysicists for this pur-
pose. The images are first processed through theimage processing
pipelinefor correction and calibration. Thedetection pipelineex-
tracts light sources from the images and generates detections by
differencing with a template image (hence the detections are called
Differential Image Analysis sources or DIASources). Theasso-
ciation pipelinecrossmatches these DIASources with existing ob-
jects in the historical catalog. That is, new detections from every
snapshot are crossmatched against existing objects using a prede-
termined search radius. In database parlance, a crossmatch corre-
sponds to aspatial join operation, i.e. a join between the catalog
tables based on the spatial attributes of the objects. Here, we have
a 2-way spatial crossmatch between the DIASource and object ta-
bles.

Each snapshot image corresponds to a single field-of-view (FOV).
The real LSST estimates for an FOV size are about10 sq.degrees.
The object density within an FOV is expected to be 10 million in
the worst case and about 4 million in the average case. So, on an
average, the association pipeline would involve a crossmatch of 40
thousand new detections against 4 million objects (hundred thou-
sand against 10 million in the worst case). The biggest challenge



from a computational perspective isreal-timetransient alert gener-
ation [3], i.e. for any new unmatched detection, a decision must be
made to trigger an “alert” in real-time so that astronomers the world
over can be notified immediately thereby leading to closer monitor-
ing of the transient object. Moreover, the object catalog needs to
be updated on-the-fly to reflect newly detected objects. Hence, the
performance requirements on the underlying computing system are
extremely demanding.

The LSST use-cases and datasets possess chracteristics that can
be exploited to improve performance: (1) The spatial extent of
the sky in terms ofdeclinationandright-ascensioncoordinates is
known in advance. So the spatial data structures and indexes can be
constructed accordingly keeping these limits in mind. As objects
are not expected to change position arbitrarily, reasonably static
schemes can be employed to partition the sky. (2) The cadence of
movement of the telescope as it scans the sky is also fairly regular.
The LSST Online Control System will know at least 30 seconds
in advance the coordinates of the next FOV. Thus, it is possible to
prefetch the corresponding data for that FOV ahead of time. Also,
it is assumed that the same FOV will not be visited more than once
in some predefined interval. (3) The crossmatch of one FOV is
independent of other fields of view. It is possible to pipeline the
crossmatching operations for multiple fields of view, where the I/O
operations for one FOV are coincident with the crossmatch compu-
tation for another FOV. The crossmatch process in the LSST is di-
vided into three phases: (1)prepare phase where the object catalog
is scanned and only the relevant data for the current FOV is staged
into a separate table. (2)compare and updatephase where the ac-
tual crossmatch is performed on the FOV data. (3)postprocessing
phase that updates the object catalog based on findings from phase
2 and generates alerts if necessary. In section 3, we discuss some
related efforts that address the crossmatch challenge.

3. RELATED WORK
Most efforts towards performance optimization of the spatial cross-
match problem for large datasets focus on reducing the computa-
tion cost (i.e., minimizing the number of object comparisons) and
the disk I/O overheads. We classify these efforts into two broad
categories: customized solutions and database-oriented solutions.

Customized solutions are those in which the crossmatch logic for
the application is implemented outside of the database. These so-
lutions are usually application-specific and involve the use of spe-
cial data structures and specific optimizations for a given architec-
ture. For the LSST application, Serge Monkewitz of the Infrared
Processing and Analysis Center (IPAC) has developed a shared-
memory based solution that performs real-time crossmatch on in-
memory object data. As in most data-intensive applications, the
LSST crossmatch operates only on small portions of the large dataset
at a given time. That is, for a given FOV, it suffices to cross-
match detections against only those objects that lie within that FOV.
Spatial indexes can be built on the data to speed up the process
of selecting objects that lie within the bounding box of the FOV.
Over the years, many spatial indexing schemes have been devel-
oped to support analysis of spatial data. Gaede and Gunther [6]
provide a comprehensive survey of such schemes. Abdulla, a co-
author on this paper, used variants of the R-tree index to support
nearest-neighbor and other spatial queries in astronomy. The Hier-
archical Triangular Mesh (HTM) spatial index by Kunszt [13] re-
cursively divides the sky area into multiple spherical triangles and
numbers them based on spatial proximity. Taylor [14] has proposed

Inputs:
CatalogsA, B

search radiusθ
Algorithm:
1 N ← size ofA
2 M ← size ofB
3 for i = 1,N
3.1 for j = 1,M
3.1.1 if d(Ai, Bj) < θ

3.1.2 then
3.1.2.1 Match
3.1.3 endif
3.2 endfor
4 endfor

Figure 1: Naive cross-match algorithm

O(N log N ) tile-based and multicone indexing approaches for the
crossmatch. Papadomanolakis [10] developed an indexing algo-
rithm known as Directed Local Search(DLS) for efficient query
processing in unstructured tetrhedral meshes. Gray et al [7] pro-
pose a finer-grain “zones” indexing scheme that minimizes compu-
tational cost by reducing the search space for each object. While
the use of indices improves data selection times, complex indexing
schemes can slow down updates to the object catalog. Monkewitz
has used data compression mechanisms to reduce disk I/O volume
and facilitate efficient updates. Abdulla used incremental cluster-
ing techniques to update the catalog.

In contrast, crossmatch logic in database solutions is implemented
in the database itself using the SQL language. Popular database
systems support a basic set of native spatial indexing schemes such
as the R-tree. Some of the more complex indexing schemes men-
tioned above may be implemented as stored procedures in the database.
Power [11] has experimentally evaluated the performance of cross-
match algorithms on large catalogs using the MySQL and OR-
ACLE database systems. Maria et al. [9] have implemented the
crossmatch operation with the zones index on the Microsoft SQL
Server system. Becla et al [4] offer an alternative view to data or-
ganization for the LSST. They describe the partitioned storage of
the catalog in the form of smaller sub-tables, where each sub-table
contains those objects that lie within a region or chunk of the sky.
Sub-tables can be stored on or striped across multiple disks. No
indices are maintained for the sub-tables. As a result, there is a
large improvement in update performance with only an affordable
increase in the data selection cost. Our work is similar to these
earlier works in that we target database solutions to support spatial
object association. We study the impact of architecture choices and
parallel query processing techniques on crossmatch performance.

4. CROSSMATCH ALGORITHMS
In this section, we describe variants of the crossmatch algorithm
that we evaluated on different configurations. The naive crossmatch
algorithm, shown in Figure 1, takes each object in one tableA and
compares it against every object in another tableB. Suppose table
A hasN objects and tableB hasM objects, then the cost of this all-
to-all comparison approach increases asO(N ×M ) and performs
poorly for large catalogs.

4.1 Zones algorithm



In astronomy, the data space is a celestial sphere referenced us-
ing declination and right ascension coordinates that wraparound
near the poles. Unlike adaptive mesh simulations and other spa-
tial applications, the search radius is known in advance and is of
the order of arcseconds1. The zones indexing algorithm proposed
by Jim Gray et al. [7] bins the sphere data horizontally into non-
overlapping “zones” or bands of some predefined height such that
objects with similar declination values lie within the same zone.
For example, if the zone height is chosen to be 1 arcminute, then
there will be 10,800 zones. The characteristics of celestial objects
have been well studied; for a given object, it suffices to look for
matches within the same zone and within a small subset of “neigh-
boring” zones. This way, the zones algorithm is able to reduce
the search space and the computational requirements of the cross-
match operation2. An object within zoneZ in one table is com-
pared only against those objects in the other table that lie within
neighboring zones ofZ. Within each such zone, comparisons are
made only against objects that are within a specific right-ascension
range which is determined based on the spatial position of the zone.
The crossmatch query expressed in SQL for the zones algorithm
is shown in Figure 2. Here,A andB are the tables being cross-
matched andθ is the search radius.ZoneZoneis an intermedi-
ate precomputed table that maintains the neighbor zone informa-
tion for each zone.ra anddecl are the right-ascension and dec-
lination coordinates for the object in the sky whiledeltaRais the
right-ascension range that needs to be searched within a zone.x,
y andz are spatial coordiantes that allow for finer-grain distance-
based comparison. This table is referred to as the intermediate zone
neighbor table. The algorithm has been shown to work well for
batch-oriented spatial queries like the crossmatch where the same
operation is performed on multiple objects. An explanation of the
query is beyond the scope of this paper. We refer the readers to
the paper by Jim Gray et al. [7] for a detailed description of the
algorithm.

SELECT A.objId, B.objId FROM A, B
INNER JOIN ZoneZone zz ON A.zoneId=zz.zoneId
INNER JOIN B ON zz.matchZoneId=B.zoneId
WHERE B.ra BETWEEN A.ra-zz.deltaRa AND A.ra+zz.deltaRa
AND B.decl BETWEEN A.decl-θ AND A.decl+θ
AND POW(A.x-B.x,2)+POW(A.y-B.y,2)+POW(A.z-
B.z,2)< dmax

Figure 2: Zones algorithm
4.2 Optimized Zones Algorithm
Becla et al. [4] proposed an improved form of the zones algorithm
that exploits specific features of the LSST. Their approach accounts
for wraparound of the sky data near the poles. Moreover, their ap-
proach assumes that each zone has a maximum of three neighbor-
ing zones; the zone itself and the two “sandwiching” zones (i.e.,
zonei−1 and zonei+1 for a givenzonei) along the declination
dimension. Through this assumption, they avoid the potentially
costly join operation against the intermediate zone neighbor table
in the zones algorithm. Instead, for a given zone in the primary
table (table A in the zones algorithm), this algorithm creates a tem-
porary “SecondaryZone” table on-demand containing all objects in

91The projected search radius for the LSST is around 0.05 arcsec-
onds.
92It is assumed that the height of a zone exceeds the search radius.

Inputs:
Primary tableA, Secondary tableB
search radiusθ

Algorithm:
1 minZ ←minimum zone inA
2 maxZ ←maximum zone inA
3 for i = minZ, maxZ

3.1 Determine neighboring zones of interest for zonei

3.2 Create temporary SecondaryZone table
3.3 INSERT INTO SecondaryZone

SELECT ra, decl, x, y, z, ObjId, zoneId
FROMB WHERE zoneId is a neighbor zone

3.4 SELECTA.ObjId,s.ObjId FROMA

INNER JOIN SecondaryZone ASs ON s.ra
BETWEEN right ascension limits
WHEREA.zoneId =i

AND s.decl BETWEENA.decl -θ AND A.decl +θ

AND POW(A.x-s.x,2)+POW(A.y-s.y,2)
+POW(A.z-s.z,2)< dmax

3.5 Adjust SecondaryZone table (3-zone sliding window)
4 endfor

Figure 3: Optimized zones (OptZones) algorithm.

the secondary table (table B in the zones algorithm) that are within
the 3 zones of interest. Moreover, the "SecondaryZone" table con-
tains only those attributes of each object that are relevant to the
crossmatch, i.e. the spatial coordinates. Hence, the SecondaryZone
table is smaller in size as compared to the intermediate zone neigh-
bor table from the zones algorithm. A spatial join is then performed
between the primary table and the SecondaryZone table thus result-
ing in a crossmatch of all objects that lie within the corresponding
zone. This process is repeated for every zone in the primary table.
The algorithm is shown in Figure 3.

Compared toOptZones, theZonesalgorithm uses a single complex
query for the crossmatch involving joins between the primary and
zone-neighbor tables as well as the secondary table. The joins are
performed on thezoneIdandra attributes of an object. Appropriate
indexes such as a composite B-tree index on these attributes should
improve the join performance and overall query execution time.
Good performance will transpire if the database system can use
the proper indexes for the query. Joins are performed on a per-
object basis against the intermediate zone neighbor table. Small
zone sizes will result in a large zone neighbor table and increase
the crossmatch time for this algorithm. TheOptZonesalgorithm,
on the other hand, removes the need for the large zone neighbor
table. It breaks down the query execution inton joins between
the primary table and smaller SecondaryZone tables created on-
demand for each zone. Here,n is the number of zones present
in a field of view (FOV). TheOptZonesalgorithm basically seeks
to emulate a sort-merge join operation between the two tables by
joining them in an increasing order of the zoneIds. The ability to
break down the query into subqueries allows for parallelization of
the algorithm on suitable architectures. Our experiments evaluate
the effect of different database configurations and architectures on
these algorithms.

5. ARCHITECTURES AND DATABASE CON-
FIGURATIONS



One of the challenges in the LSST is to determine the right kind
of data management system to set up at the base camp to perform
the nightly processing including the association pipeline. Database
system configurations on a single processor system are unable to
generate adequate performance to satisfy real-time constraints when
dataset sizes increase. In this section, we present the system and
database configurations we used in our experimental evaluation of
the crossmatch algorithms. The base configuration is a stand-alone
database system (the open-source MySQL version 5.1.22 was used)
with a non-transactional storage engine (MyISAM in the case of
MySQL). The server and client run on the same dual-processor ma-
chine.

5.1 Configuration 1: Parallel Database Sys-
tem with Active Disks

Our first configuration comprises of a database system, which runs
on a massively-parallel backend and employs active disk style [2]
hardware acceleration for some of the database operations. Active
disk based systems push computation closer to the data, to the ex-
tent possible, as opposed to the conventional idea of staging disk-
resident data into memory for processing. The use of active disks
was initially proposed in order to offload bulk of the data process-
ing to disk-resident processing elements [2]. Processing units are
integrated with the disk drives to allow application-specific code to
work on the data as it streams off the disk. The main motivations
behind evaluating this configuration are to gauge the improvements
brought about by parallel query execution (which crossmatch algo-
rithm is more amenable to parallelization?) and by the use of active
disk style processing (to what extent can disk I/O volumes be re-
duced by offloading processing to disk?). In our experimental eval-
uation, we used the Netezza Performance Server (NPS) [1], which
is a commercial data warehousing appliance. The Netezza system
stores data in a database that is distributed across multiple backend
nodes. It also employs active disk style processing in that some of
the database operations such as filtering are implemented in Field
Programmable Gate Arrays (FPGAs) near disks. The system com-
bines the use of the following features:

Asymmetric Massively Parallel Processing(AMPP): The system
consists of one frontend and a large number of backend “snippet”
processing units (SPUs). The frontend is responsible for query
parsing, parallel query plan generation (i.e. each query is broken
down into sub-queries or snippets that can be executed in parallel
on the backend processors), and for combining the results obtained
from multiple SPUs. Each SPU is made up of a low-power embed-
ded PowerPC processor that has its own memory and disk (capable
of delivering I/O bandwidths of upto 60 MB/sec). The aggregate
bandwidth that one can obtain out of all the disks scales linearly
with the number of SPUs in the system.

Active disks: Netezza implements a realization of active disk tech-
nology. Netezza provides a Field Programmable Gate Array (FPGA)
processing unit attached to the disk drive on each SPU. The pro-
cessing unit is programmed to perform simple filtering and projec-
tion operations on the data. These processors act as disk-controllers
to filter the data as it streams from disk to the SPU’s memory. In the
current implementation, user-defined re-programming of the FP-
GAs is not allowed. Hence, the type of processing that can be
pushed near disk is limited to the set of operations pre-programmed
in the FPGAs.

High-speed interconnencts: The frontend and the SPUs are inter-
connected via a high-speed Gigabit Ethernet switch. By providing
increased network bandwidth, the data exchange between the pro-
cessing units is much faster and is not limited by the communica-
tions medium.

Hash-based data partitioning:Netezza uses a hash-based data par-
titioning technique to uniformly distribute the data in a table across
all the SPUs in the system. The contents of each table in the
database are striped row-wise and the records are then distributed
across the SPU disks based on a hash of the contents of the distri-
bution column. In general, a uniform hash-based distribution of a
table’s contents will lead to better load balance amongst the SPUs.

User-defined functions:Netezza provides support for user defined
functions(UDFs), also known asOn SPU Functions (OSFs), which
are application-specific functions executed in parallel by each SPU
on its local data. UDFs are coded in a high-level language (C/C++)
and translated into object code that can execute on each SPU.

Snippet processing:Each query is broken down into a set of sub-
queries or snippets that can be executed in parallel on the SPUs
such that most snippets require only data local to the SPU. In the
case of joins and other complex queries, data needs to be transferred
between SPUs over the high-speed interconnect. Such transfers
occur in parallel without overloading the network.

Indices: Netezza does not support index construction on the data.
In its place, Netezza provides zone-maps (not to be confused with
the zones algorithm). That is, indices generally tell a database sys-
tem what data to read, while zone-maps tell the Netezza system
what not to read. Zone-maps are realized in a software module
of Netezza known as the storage manager. Zone-maps exploit the
natural ordering of data that exists in most tables. When a query ar-
rives, the storage manager looks up the zone-map to tell the FPGAs
what data extents not to read (row-based filtering). In addition, de-
pending on the columns specified in the query, the FPGA drops the
irrelevant columns of the table(column-based projection). Using
these features, Netezza is able to provide appreciable performance
even without index support.

We conducted our crossmatch experiments on the Netezza system
set up at the Lawrence Livermore National Laboratory. We imple-
mented the naive,Zones, andOptZonesalgorithms on the system.
We used Netezza’s SQL interface,nzsqlwhich conforms to SQL
standards and is a lighter version of PostgreSQL. As a result, we
were able to use existing implementations of the different cross-
match algorithms on the Netezza system with minor modifications.
The absence of certain features (mainly the lack of support for in-
dexes and stored procedures) required re-writing of portions of the
schema and the crossmatch queries for each algorithm.

5.2 Configuration 2: High-Throughput Net-
work Databases

This configuration consists of a network database system designed
to support multiple clients accessing the system over a network.
High-throughput network databases can easily be set up to work
on high-performance storage/compute clusters built from commod-
ity off-the-shelf components. In our work, we employed MySQL
Cluster as the high-throughput network database system.

MySQL Cluster [12] and its in-memory transactional storage en-



gine, NDB, present a virtual database to the end-user. The database
is actually distributed across nodes in a shared-nothing architec-
ture. The motivations behind evaluating such a configuration were
two-fold: (1) MySQL Cluster uses the collective memory of all
nodes to store data. The NDB storage engine maintains all ta-
bles and indexes in this memory pool. High-end storage clusters
are generally built from memory-intensive machines. Given the
rates at which memory capacity is increasing on today’s machines
and the rise in popularity of non-volatile flash memory, it may be
feasible to store the entire object catalog in this memory pool. In
addition, advances in high-speed interconnect technology such as
Infiniband provide rapid access to remote memory. This way, the
crossmatch can be executed entirely on in-memory data thereby
leading to significant I/O savings. (2) MySQL Cluster is designed
to be a high-throughput database system. Unlike the Netezza Per-
formance Server that is designed to optimize execution of a com-
plex query against large data, MySQL Cluster can support a large
number of concurrent queries against the in-memory data (hence its
designation as high-throughput network database system). Based
on our observation that the crossmatch query inOptZonesalgo-
rithm can be explicitly broken down into a large number of smaller
sub-queries, the algorithm could benefit from a configuration like
MySQL Cluster.

A MySQL cluster instance consists of a set of nodes in a shared-
nothing environment, one of which acts as the manager node. The
remaining nodes are either data nodes (the backend) or front-end
nodes. Tables and indexes are partitioned and stored in memory
on the data nodes. MySQL Cluster is also designed to be a high-
availability database, where data can be replicated synchronously
among the data nodes so that there is no single point of failure. The
database system takes care of replica consistency. The in-memory
data is also check-pointed to disk logs regularly in order to prevent
data loss. Like Netezza, MySQL Cluster partitions data based on
a hash of the distribution column(s) chosen by the user. However,
MySQL Cluster does not have a parallel query engine. When a
query is submitted, a front-end node parses the query and generates
a query plan which is broadcast to all the data nodes. Index lookup
and table scans occur in parallel on each data node, making MySQL
Cluster efficient for point-queries and simple data lookup opera-
tions. For execution of joins and other complex queries, MySQL
Cluster will not automatically transfer any data amongst the data
nodes. The user will explicitly need to choose a data distribution
strategy such that all joins operate on data local to each data-node.

For our experimental evaluation, we implemented the naive,Zones,
andOptZonesalgorithms on a MySQL Cluster instance set up on an
NSF-funded high-end memory cluster at the Ohio State University.

5.3 Configuration 3: Shared-nothing Databases
with Replication

We designed a hybrid configuration using the MySQL database
system, borrowing the features from the previous two configura-
tions. This configuration runs over a cluster of data nodes in a
shared-nothing architecture. Each node runs a server (the MyISAM
storage engine was used) and operates only on its local data. The
frontend consists of a master node that can break down queries into
smaller sub-queries for execution on the data nodes. Data can be
partitioned uniformly across the data nodes. Since this configura-
tion does not support any parallel query execution, relevant data
needs to be replicated. Like MySQL Cluster, indexes can be built
on the data, database operations can be performed on in-memory

tables and multiple queries can be issued concurrently from the
master node. Like the Netezza, joins and other complex queries
can be executed in parallel on the backend data nodes. In one ex-
treme form of this configuration, we have no replication of data,
i.e. the data is only partitioned across the backend nodes. Here, the
query workload needs to be broadcast to all the nodes. At the other
extreme, we have complete replication of data. Here, we can break
down the query into sub-queries such that each data node takes on
only a part of the workload.

We evaluated theZonesandOptZonesalgorithms on this configu-
ration set up using the high-end memory cluster at the Ohio State
University. Our master node executes outside of the database (writ-
ten using C++). We maintain that this is not a customized solution
for a specific application. The master node merely controls the
partitioning and replication of data and schedules the execution of
sub-queries among the backend nodes. Our implementation of this
configuration uses DataCutter [5] for runtime support and parallel
execution. DataCutter is a component-based middleware frame-
work that uses the filter-stream programming model. In DataCutter,
application processing structure is implemented as a set of compo-
nents, referred to asfilters, that exchange data through astream
abstraction. In this work, we have used a version of DataCutter
which employs the MVAPICH flavor of MPI as the message pass-
ing substrate. This enabled us to leverage the Infiniband support
available on our cluster for high-speed data transfers.

6. PERFORMANCE EVALUATION
In this section, we describe dataset and query region characteristics
and present experimental results for each configuration.

6.1 Dataset characteristics
As the LSST is not expected to start generating data until 2014,
the USNO-B catalog is used to emulate the characteristics of the
data catalogs that would be generated in the real LSST application.
The USNO-B catalog is a public catalog generated by the National
Optical Astronomy Observatory and contains over a billion objects.
It is expected that the catalog would contain 23 billion objects by
the time of the first public data release. “Skinny” object records use
up 100 bytes while “fat” objects entries are about 1.1 kB. The actual
LSST estimate for a fat object is around 1.7 kB. The crossmatch
search radius used in all experiments is 3 arcseconds or 0.000833
sec. In our tests, we evaluated crossmatch performance only for
skinny objects.

We use three different test FOV regions chosen by the astrophysi-
cists to evaluate the crossmatch performance. These regions are
characterized by differences in their object density (high, average,
low). To simulate DIASources for a test FOV region, we use a per-
turbation function and apply it to the objects within that region3.
The number of detections this function generates for an FOV is
roughly one-hundredth the number of objects present within that
region. Table 1 summarizes the characteristics for each of our
test regions. The extreme-right column of the table is the number
of matching entries that result from crossmatching the objects and
DIASources regardless of the crossmatch algorithm used.

6.2 Stand-alone Database

93This function was developed by Serge Monkewitz of IPAC and
his collaborators.



Test FOV Region # Objects # DIASources # resulting
(approx.) matches

High density 3044468 30551 53938
Average density 373763 3709 4888

Low density 76073 764 942

Table 1: Test Region Characteristics

In this base configuration, we use a MySQL client and server (ver-
sion 5.1.22 with the MyISAM storage engine) on a dual-processor
machine equipped with AMD Opteron-250 2.4 GHz processors,
with 8 GB of DDR400 RAM. The machine has 2x250GB SATA
Hard disks installed locally, joined into a 437GB RAID0 volume
(with a RAID block size of 256KB). The maximum disk bandwidth
available for sequential reads was 35 MB/sec and for sequential
writes was 55 MB/sec. The object catalog data was partitioned into
coarse chunks that were 1.75 degrees in height and 1.75 degrees
in width. This coarse chunking strategy was proposed by Becla et
al. [4] to minimize the prepare phase execution time. Object and
detection data for a given FOV are extracted into in-memory ta-
bles for the crossmatch operation. Relevant indices are built on the
in-memory tables to further improve performance.

Tables 2 and 3 respectively show the time taken to crossmatch the
object table against the DIASource table and vice-versa for each
algorithm and each test region. The order in which the tables are
crossmatched can be modified without affecting the crossmatch re-
sult.

Test FOV Region Naive Zones OptZones
algorithm algorithm algorithm

High density 11h 19m 11h 55m 17.05 s
Average density 10m 23s 10m 34s 1.9 s

Low density 25.57 s 27.15 s 0.4 s

Table 2: Crossmatch time on MySQL (Object vs. DIASource)

Test FOV Region Naive Zones OptZones
algorithm algorithm algorithm

High density 9h 21m 9h 58m 13.14 s
Average density 8m 26s 8m 53s 1.49 s

Low density 21.14 s 21.94 s 0.32 s

Table 3: Crossmatch time on MySQL (DIASource vs. Object)

As expected, the naive algorithm performs poorly especially for the
high-density region. One might expect theZonesandOptZonesal-
gorithm to perform much better as they reduce the search space.
However, we observe that the performance of theZonesalgorithm
is no better than the naive algorithm. The performance figures sug-
gest that an all-to-all comparison of objects and detections is occur-
ring in theZonesalgorithm for these queries and that the database
system is not using the composite (zoneId, ra) index for the spa-
tial join operations. TheOptZonesalgorithm exhibits best perfor-
mance. Here, the SecondaryZone table constructed on a per-zone
basis is indexed only onra.

6.3 Netezza Performance Server
A “half rack” Netezza [1] system at the Lawrence Livermore Na-
tional Laboratory (LLNL) was used to evaluate configuration C2

described in section 5.1. The frontend of the system is connected
via Gigabit Ethernet switch to 56 SPUs. Each SPU had 320 GB
local disk with a read bandwidth of 60 MB/sec per SPU disk. Bulk
upload mechanisms (nzload) were used to ingest the USNO-B data
into the disks of these 56 SPUs. The data was distributed uniformly
amongst the SPUs based on a hash of the object ID column. The
selection of objects within a given FOV will occur in parallel on
all SPUs. Unlike in the stand-alone database configuration where
FOV objects are extracted into in-memory tables, here, they are ex-
tracted into another disk-based table that is also distributed across
all the SPUs.

The prepare phase on the Netezza for the high, average and low
density regions respectively took 87, 84 and 81 seconds. The time
to insert data does not increase much with increasing object density.
The crossmatch algorithms needed modifications to run on Netezza
system. TheZonesalgorithm andOptZonesalgorithm had to run
on non-indexed tables. The version ofnzsqlwe used in this work
did not have support for stored procedures. Hence, thefor loop
ranging from the minimum to the maximum zones in theOptZones
algorithm had to be scripted explicitly outside of the database. The
script issues a join query for each of then zones in batch-form.
Additional statements were added to the algorithm to remove trans-
actional overheads that arise from batch execution of queries. We
also developed a user-defined function (UDF) to determine thera

search-range for a given neighbor zone. This UDF is used in the
modifiedOptZonesalgorithm and gets executed on each SPU.

Test FOV Region Naive Zones OptZones
algorithm algorithm algorithm

High density 1950 s 51.15 s 210 s
Average density 25.62 s 2.8 s 96 s

Low density 2.1 s 0.69 s 67 s

Table 4: Crossmatch time on Netezza (Object vs. DIASource)

Test FOV Region Naive Zones OptZones
algorithm algorithm algorithm

High density 2739 s 52.47 s 280 s
Average density 36.79 s 2.85 s 132 s

Low density 1.9 s 0.7 s 118 s

Table 5: Crossmatch time on Netezza (DIASource vs. Object)

Tables 4 and 5 show the performance numbers for crossmatch on
the Netezza system. We observe that theZonesalgorithm performs
the best among all algorithms for every test region in spite of the
fact that tables in Netezza are not indexed. This shows that the
Netezza query engine can efficiently break down even complex
join queries like crossmatch into appropriate snippets. TheOpt-
Zonesalgorithm does not perform as well on the Netezza as it did
on the stand-alone database configuration on account of two major
reasons; firstly, theOptZonesalgorithm constructs and populates
SecondaryZone tables on-demand for every zone in an FOV. These
ad hoctables will be created on disk as opposed to memory and
distributed across all the SPUs in the Netezza system. The over-
head of having to create disk-based tables on-demand leads to poor
performance. Secondly, and to a lesser extent, stored procedures
would have allowed us to prepare an SQL statement once and use
it for multiple input values. The lack of support for stored proce-
dures in the Netezza meant that each of then queries issued from
the external script were treated as independent queries and entailed
query-parsing overheads each time.



It is interesting to note the effect of the order in which the tables
are crossmatched on the crossmatch performance. As mentioned
earlier, the DIASource table for an FOV contains roughly one-
hundredth the number of elements present in the object table for
that region. In the stand-alone configuration, it was better to cross-
match DIASources against Objects, whereas on the Netezza, it was
better to crossmatch Objects against DIASources. We do not have
an explanation for this observation apart from the fact that the be-
havior depends on the query plans generated by the query engine
in each configuration.

The time taken to execute the prepare phase and the best cross-
match algorithm on the high-density region takes over two minutes
on the Netezza system. We sought to avoid the prepare phase alto-
gether by crossmatching DIASources directly against the large ob-
ject catalog, a process that took 18 minutes. We observed that time
to perform crossmatch increased exponentially as the size of the
tables increased because larger tables imply greater data communi-
cation volumes among the SPUs. Thus, we partitioned the object
catalog into a set of coarse chunks (represented as sub-tables in the
database). Each sub-table is distributed across all the SPUs. The
crossmatching of a pair of objects is independent of all other ob-
jects. So, when crossmatching tablesT1 andT2, one can break
down either of the tables, sayT2, into n sub-tablesT21, T22,
. . . , T2n. CrossmatchingT1 against each of these sub-tables and
then simply merging the results has the same effect as crossmatch-
ing T1 directly againstT2. Given an FOV and the correspond-
ing DIASources, we determine the set of intersecting chunks and
crossmatch the DIASources against the entire contents of each such
chunk and merge the results. For the LSST, we uniformly par-
titioned the data space into disjoint coarse chunks that were 4.5
degrees wide and 4.5 degrees in height. The chunk tables are dis-
tributed amongst 48 SPUs of the Netezza system (8 of the SPUs
were down at the time of testing). For this chunking strategy, the
high-density FOV region intersected with 4 chunks. The results of
the crossmatch against each of these four chunk tables is shown
in Table 6. The last row in the table provides gives us the time it
would take to directly crossmatch the DIASources against a table
created from these 4 chunk tables using the prepare phase.

DIASource vs. Crossmatch time # matching entries
Chunk 1 21 s 13196
Chunk 2 19.7 s 14424
Chunk 3 19.2 s 14140
Chunk 4 17 s 12178

Total 1m 17s 53938
FOV object 1m 11s 53938

Table 6: Partitioned crossmatch time on Netezza (Chunks vs.
DIASource)

The results tell us that crossmatch against a set of intersecting chunks
performs only slightly worse as compared to the earlier ’prepare +
crossmatch’ strategy. This is understandable because there will be
more false-positives to deal with in the former case. Importantly
though, by using the intersecting chunks directly, we are avoiding
the prepare phase altogether. To further reduce crossmatch time, we
could simultaneously issue the crossmatch queries against each in-
tersecting chunk. However, systems like Netezza are optimized for
performance of complex queries on large data and not for through-
put of execution of a large number of concurrent queries. We were
limited here by the number of concurrent database sessions that
Netezza can support.

6.4 MySQL Cluster
This configuration was tested using MySQL Cluster [12] (version
5.1.22, NDB storage engine) on an NSF-funded cluster at the Ohio
State University consisting of 16 AMD Dual 250 Opteron nodes,
each with 8 GB of memory. The nodes are interconnected by
both an Infiniband and 1Gbps Ethernet network. Each node has
2x250GB SATA disks installed locally, joined into a 437GB RAID0
volume. The maximum disk b/w per node was around 35 MB/sec
for sequential reads and 55 MB/sec for sequential writes. The
MySQL Cluster configuration consisted of one manager node, upto
8 API nodes and 8 data nodes. The replication factor was disabled,
i.e. there was just a single copy of the data partitioned uniformly
among the data nodes.

Tables 7 and 8 show results for the crossmatch algorithms for the
high and average density regions. For these experiments, we had a
single API node issuing the crossmatch query.

Test FOV Region Naive Zones OptZones
algorithm algorithm algorithm

High density 11h 22m 11h 58m 13m 34s
Average density 10m 16s 10m 57s 18s

Table 7: Crossmatch time on MySQL Cluster (Object vs. DIA-
Source)

Test FOV Region Naive Zones OptZones
algorithm algorithm algorithm

High density 9h 27m 10h 2m 19m 40s
Average density 8m 37s 9m 15s 2m 30s

Table 8: Crossmatch time on MySQL Cluster (DIASource vs.
Object)

The results show that the naive andZonesalgorithms perform no
better on the MySQL Cluster than on the stand-alone MySQL con-
figuration. Since the crossmatch is performed on memory-resident
data in both configurations, we should not expect any improvement
brought about via parallel I/O on the MySQL Cluster. Since exe-
cution of joins is not parallelized in MySQL Cluster, we presumed
that relevant data is transferred to a single data node where the join
is performed. However, theOptZonesalgorithm takes much longer
on MySQL Cluster than on a stand-alone MySQL configuration.
On further investigation, it was observed that joins and other com-
plex queries in MySQL Cluster always get executed on a frontend
API node. TheOptZonesalgorithm breaks down the crossmatch
query implicitly into a set ofn joins, one per zone in the FOV.
Hence for each join, data gets transferred over the network from
the data nodes to a single API node where the join is executed.
Moreover, there is very limited caching of data at the frontend, i.e.
if we were to join tableT1 against a hundred other tables, then, ta-
ble T1 is transferred from the data nodes to the API node for each
of the hundred join queries. This join mechanism explains the poor
performance of theOptZonesalgorithm on this configuration.

The main advantage of the MySQL Cluster configuration is the
ability to issue a large number of concurrent subqueries from multi-
ple frontend API nodes. To exploit this feature, we broke down the
query in theZonesalgorithm explicitly intop sub-queries wherep
is the number of API nodes used to issue the sub-queries. In this
way, each API node would submit a query responsible for (1/p)th
of the overall query workload. Figure 4 shows the improvement in



query execution time as we increase the number of API nodes, i.e
the number of concurrent sub-queries.
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Figure 4: Improvement in crossmatch time with increase in
API nodes on MySQL Cluster. (8 data nodes, average density
test region

Although these numbers cannot be classified as real-time, they show
that a configuration like MySQL Cluster can scale well as the cross-
match query is broken down into smaller and smaller subqueries.
Improvements to the join mechansims are expected in future re-
leases of MySQL Cluster.

6.5 Shared-nothing MySQL with Replication
This configuration was developed using the same hardware spec-
ified in Section 6.4. Each of the 16 nodes ran an independent
MySQL server (version 5.1.22 with MyISAM storage engine) with
table data stored on local memory/disk. An additional node served
as a master node coordinated the query execution. This hybrid set
up can be configured into independent groups of nodes based upon
a replication factor. A set ofn nodes can be divided intog groups
of p nodes each. Data from the entire object catalog is distributed
among the nodes in each group. Here,g is the replication factor
because copies of data exist in each group, and there areg such
groups. At one extreme, we may have ann × 1 grouping, i.e. a
single group consisting ofn nodes. This corresponds to the case
where the data is uniformly partitioned amongst the nodes without
any replication (similar to the data distribution schemes in Netezza
and MySQL Cluster). At the other extreme, we can have a1 × n

grouping meaning we haven groups of one node each, where data
is replicated across all the nodes, and a query can be executed inde-
penedently by any node/group. By modifyingg andp for a given
n, we can evaluate intermediary grouping schemes which help us
control the data partitioning and replication more flexibly than in
our earlier configurations.

We evaluated theOptZonesalgorithm which had to be modified
to run in this configuration. The replication of the historical data
amongst the nodes is done as an offline operation and is not part
of our evaluation. Given a FOV, the master node first communi-
cates the FOV to the worker nodes so that they can prefetch the
historical objects within that FOV into an in-memory Object ta-
ble (i.e. the prepare phase). The master node then sends the new
DIASources for that FOV to the data nodes. Once the data nodes
receive these detections, they perform the crossmatch in memory
against only those objects that are stored locally on that node. In

this confguration, our main goal is to be able to avoid the need for
a distributed join operation. Since we are using a shared-nothing
set of database instances, we need to structure the execution of the
crossmatch queries such that each data node performs joins only on
the data it locally owns.

The overall query execution time in this configuration includes the
time to transfer the detections over the network and the time to ex-
ecute the query. The amount of data transferred and the computa-
tional workload on each data node will depend upon the grouping
strategy adopted. In then × 1 (only partitioning, no replication)
case, every join operation potentially needs data from all nodes on
account of the uniform partitioning of the Object table. Here, the
master node needs to send the DIASources to all the data nodes.
This could prove to be a bottleneck in the case where the number
of DIASources is extremely large and comparable to the number of
objects in the FOV, or in the case where our configuration has been
deployed on a cluster with slow network connections between the
nodes. This scheme would work well in the case where we have
low-power processors connected via high speed communications
medium. On the other hand, in the1× n case, each join query can
be executed by any one of the nodes. So, the master node divides
the query workload equally amongst the data nodes and sends only
(1/n)th the number of DIASources to each data node. In this case,
we are reducing the volume of data communicated. But each data
node will have to crossmatch its share of the DIASource against all
objects in the FOV. This case would ideally suit clusters with very
fast processors and slower networks. In the intermediate group-
ing strategies, the master node would need to send a subset of the
DIASources to a group of data nodes.

FOV Prepare DIASource Query Total
time time transfer time

High 1.97 s 5.6 s 1.27 s 6.99 s
Average 0.87 s 5.05 s 0.24 s 5.39 s

Low 0.77 s 5.04 s 0.13 s 5.25 s

Table 9: Execution time for 16x1 strategy (OptZones algo-
rithm), Objects vs DIASources

Table 9 shows the execution times for each phase of the crossmatch
in this configuration when we chose to simply partition the data
without any replication. The “total” column is the sum of DIA-
Source transfer time, the time to load the DIASources into memory
on the data nodes and the query execution time and is measured as
the execution time as perceived by the master.

Figure 5 shows the change in execution time of each component as
we modify the grouping strategy. As we increase the replication
factor, the data nodes spend more time on the prepare phase(not
shown) and more time on the query execution. However, the trans-
fer time decreases, although only marginally for our test case.

7. SUMMARY AND CONCLUSIONS
In this work, we have explored and evaluated database-based so-
lutions to spatial object association or crossmatch, an important
spatial data analysis operation that finds use in diverse applica-
tion domains ranging from astronomy to GIS. We have investi-
gated two variations of spatial crossmatch algorithms, theZones[7]
and Optimized Zones(OptZones) [4]. These two algorithms im-
plement different query styles and optimizations. We have per-
formed an experimental evaluation of the two algorithms on 1) a
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parallel database system with active disk style support for certain
database operations, 2) a database designed for high-availability
and high-throughput, and 3) shared-nothing configuration of mul-
tiple instances of sequential databases with data replication. We
tuned the algorithms to execute on these different database systems.
All of our experimental results were based on real use-case scenar-
ios put together by astrophysicists from the LSST.

Our experimental evaluation shows that

• The Zones algorithm performs better than the OptZones al-
gorithm on the first database system configuration, because
1) theOptZonesalgorithm constructs and populates Secondary-
Zone tables on-demand for every zone in an FOV. These
tables are created on disk as opposed to memory and dis-
tributed across all the SPUs in the Netezza system. The over-
head of having to create disk-based tables on-demand leads
to poor performance; 2) The lack of support for stored pro-
cedures in the system resulted in overheads due to external
scripts being treated as independent queries.

• On the second database system configuration, the algorithms
do not perform as well as they do on the first configuration.
This is because the second configuration does not execute
a query in parallel. However, the performance of the algo-
rithms can be improved by partitioning a query into a set
of smaller queries and executing these queries as a batch, to
take advantage of the high-throughput oriented design of the
second configuration.

• The third configuration enables different partitioning and repli-
cation of the catalog tables across the instances of the database
management system in the system. The performance results
obtained from theOptZonesalgorithm on this configuration
indicates that the query execution time increases as the amount
of replication increases. This is because while replication re-
duces the amount of DIASources entries broadcast to multi-
ple nodes, but increases the time for the prepare and query
phases, since each node has to deal with a larger portion of
the catalog table (the Objects table). In our case, the size
of the DIASources was relatively small. It can be expected
that if DIASources is very large, then a configuration with

replication of portions of the catalog table could be more effi-
cient, since replication will reduce the amount of DIASource
entries broadcast.
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